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a b s t r a c t 

Most calculation procedures for time-dependent viscoelastic flows require iteration within the time step 

used to advance the solution, in order to satisfy simultaneously the momentum and the constitutive 

equations for each stress component. We have devised a way of reformulating the constitutive equation 

for the FENE-P model, or models described by similar equations expressed in terms of the stress ten- 

sor, which enables iterative methods for simulating time-dependent viscoelastic flows to become much 

more efficient: the number of iterations to obtain a solution with the reformulated stress equations is 

substantially smaller (by a factor of 5–10) than with a comparable method applied to the original, non- 

reformulated, constitutive equations. The proposed reformulation is rather simple and consists in con- 

sidering as dependent variables the reduced stresses obtained by dividing the stress components by the 

extensibility function of the model. It is tested with three problems of increasing complexity, start-up of 

channel and square-duct flows, and start-up of a rotating duct flow. 

© 2017 Elsevier B.V. All rights reserved. 
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1. Introduction 

In this work, we deal with the issue of devising more effi-

cient numerical methods for the simulation of time-dependent vis-

coelastic flows. Such simulations invariably involve iterations in-

side each time step to tackle the explicit or implicit nonlinearities

introduced by the need to solve the constitutive equations in addi-

tion to the equations of motion. 

We have found that a simple modification to the non-linear, dif-

ferential constitutive equations of the FENE-P type, in which the

stress tensor is the dependent variable, results in a considerable re-

duction of the total number of iterations required for a given sim-

ulation, thus representing a gain of efficiency which may amount

to one order of magnitude. In addition to the original FENE-P [1,2] ,

another model which also falls into that type and may benefit from

the method here devised is the constant-viscosity FENE-CR model

[3] . However, we want to emphasize from the outset that quasi-

linear rheological models, such as the upper-convected Maxwell or

the Oldroyd-B [4] models, cannot benefit from the proposed ap-

proach, as cannot the non-conservative models (in the sense used

by Oliveira [5] ), such as the Phan-Thien/Tanner (PTT) [6] or the

FENE-MCR [7] – in fact, these are the models which are often asso-

ciated with "easier" numerical simulations eg. [8] ). In a way, it may

be resumed that the present method transforms a FENE-P equa-
E-mail address: pjpo@ubi.pt 

p  

s  

t  

http://dx.doi.org/10.1016/j.jnnfm.2017.09.001 

0377-0257/© 2017 Elsevier B.V. All rights reserved. 
ion into a PTT-type equation, thus benefiting from the smoother

umerical characteristics associated with the latter. 

In our simulations, we employ a finite volume method (FVM)

9] but the proposed approach is not at all connected to a specific

ethodology to solve the equations and therefore it can easily be

pplied to finite element methods or other numerical methodolo-

ies. 

The emphasis on directing research efforts toward the simula-

ion of time-dependent non-Newtonian flows has been recognised

or some time: in 1992, at the VIIth Workshop on Numerical Meth-

ds in Non-Newtonian Flow it is stated “The development of time-

ependent simulations was identified as a major issue for the fu-

ure” [10] ; in 1993, at the VIIIth Workshop, “transient benchmarks”

ere defined [11] ; and in 1995, the IXth Workshop “saw the start

f significant effort on 3D, time-dependent flows when viscoelas-

icity is important” [12] . Since then many papers have appeared on

uch topic, which are too numerous to be reviewed here, even in

 cursory way. The book by Owens and Phillip [13] gives a com-

rehensive view of works of different methodologies (FVM- Finite

olume Method; FEM- Finite Element Method; spectral methods)

p to the year of 2002; on the FVM side, which is more pertinent

o us, the paper by Xue et al. [14] is perhaps the most relevant

s it provides an analysis of the various approaches available. Wal-

ers and Webster in 2003 state “seemingly two-dimensional steady

roblems often need to be treated as three-dimensional and un-

teady” [15] , once more reinforcing the need for efficient viscoelas-

ic solvers. A review of the literature basically shows that meth-

http://dx.doi.org/10.1016/j.jnnfm.2017.09.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jnnfm
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnnfm.2017.09.001&domain=pdf
mailto:pjpo@ubi.pt
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Fig. 1. Geometry for the rotating duct flow problem with indication of the expected 

secondary flow. 
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ds for time-dependent viscoelastic flow are imported from New-

onian CFD, with the constitutive equations appended to the calcu-

ation cycle (e.g. [16,17] with FEM or mixed FEM/FVM, [14,18] with

VM and [19,20] with spectral methods rooted on FEM). A few ap-

roaches having some similarity with that proposed here, in terms

f implying a reformulation of the constitutive or momentum

quations with view to improve the numerical behaviour of the so-

ution algorithm, were the EEME [21] , EVSS [22] and AVSS [23] for-

ulations, the three applied in conjunction with FEM, the grid-by-

rid method [24] with FVM, all these for steady-state flows, and,

ore recently, the important breakthrough introduced by Fattal

nd Kupferman [25,26] with their log-conformation formalism. It

s however fair to say that the main aspects of those numerical

ethodologies were not related specifically with time-dependent

imulations and even the log-conformation has been essentially

pplied to steady-state solutions, even if the example given in the

riginal reference [26] was a (fictitious) time-dependent flow. More

ecently, applications to time varying flows are arising, see e.g.

27] where the log-conformation formalism is employed to solve

ree-surface 3D viscoelastic flows. 

In addition to the above cited works, it is relevant to mention in

his short review some more recent (after 2010) formulations with

EM, especially designed for time-dependent viscoelastic flows,

uch as those of D’Avino , Hulsen and co-workers [28,29] who

roposed and tested some variants of a decoupled semi-implicit

cheme for inertialess and inertial flows, and Castillo and Cod-

na [30] who extended the fractional-step method of classical CFD

nto several algorithmic arrangements for the Oldroyd-B equation,

xhibiting both 2nd and 3rd order accuracy in time. The tempo-

al discretization of these methods was essentially based on the

ackward-difference formula (BDF; in [28,29] it is named Gear

ethod), or the three-time level of the present paper, except for

ome details. In [28,29] the constitutive equations for the Oldroyd-

 and Giesekus models are solved in terms of the conformation

ensor (the log-conformation was not attempted due to the in-

reased complexity), while in [30] the Oldroyd-B equation was

olved for the basic stress tensor, as in the method here suggested.

n interesting point of the formulation of [28,29] is that the stress

n the divergence term of the momentum equation is substituted

y an approximation obtained from an explicit Euler discretization

f the constitutive equation, and the terms containing either the

elocity gradients or the velocity itself (the convective term in the

onstitutive equation) are treated implicitly when solving the mo-

entum equation for the velocity. In this way, the system repre-

enting the algebraic momentum equations is never singular, even

or constitutive models without a solvent viscosity in inertialess

ows, and the implicitness of the equation is augmented. It would

ppear that in the context of FVM such approach could be imple-

ented at expense of a wider computational stencil (typically, FVM

olvers are designed for a compact stencil containing just the clos-

st neighbours to a given cell, that is 4 in 2D and 6 in 3D, for

tructured meshes). 

To test the reduced stress method, we use time-dependent flow

roblems of increasing complexity, all related to the transient es-

ablishment of a viscoelastic flow in conduits. The easiest problem

s the start-up of fully developed viscoleastic flow in a planar chan-

el, which is one-dimensional (1D) in space but, in spite of its ap-

arent simplicity, there is no available analytical solution for the

ENE-P or FENE-CR models. However, simple 1D programs we have

tilised in previous work [31] to simulate the start-up of Oldroyd-

 fluid, for which an analytical solution has been derived [32] , can

e easily extended to those constitutive models and used to verify

he solution found by the fully three-dimensional (3D) simulation

ode [9] . It is an indirect way of verifying the correctness of the

mplementation of the new method, but still it offers some degree

f confidence because the simple 1D programs are easily control-
able. This problem is then extended to the case of start-up flow

n a duct of square cross-section, which is two-dimensional (2D)

n space but without effective convection effects (since the flow is

nidirectional and assumed fully developed in that direction). The

xisting analytical solution for the final steady state of a Newto-

ian fluid (e.g. [33] ) is also valid for constant shear-viscosity vis-

oelastic fluids (such as the FENE-CR), and may thus serve to as-

ertain in part the present simulations. The last problem is much

ore complicate: we consider the start-up of flow in a rotating

uct ( Fig. 1 ). Coriolis acceleration will generate secondary flow in

he duct cross-section, thus introducing convection effects in the

roblem, which although being 2D in space has all three veloc-

ty components and all six stress components as non-zero. It is

n interesting flow problem, with some similarities to that of flow

n curved ducts, and one which has never been tested with non-

ewtonian viscoelastic fluids. 

. Constitutive equations and method 

Any general time-dependent viscoelastic flow problem requires

olution of the conservation equations for mass and momentum,

nd of a rheological equation for the extra stress tensor. The

resent numerical method is only effective for differential consti-

utive equations expressed in terms of the stress tensor, non-linear

n the stress and of the FENE-P type (this qualification is clarified

elow). Since the FENE-P was developed for dilute polymer solu-

ions, the extra stress possesses a Newtonian solvent contribution

hich is considered explicitly in the foregoing equations. 

.1. Equation of motion 

Conservation of linear momentum is expressed as 

D u 

Dt 
= −∇p + ηs ∇ 

2 u + ∇ · τ + F (1)

here the velocity vector is u = (u, v , w ) , the pressure p, ηs is the

olvent viscosity (assumed Newtonian) and τ = ( τi j ) the polymeric

tress tensor. F represents a body force per unit volume (such as

hat due to gravitational acceleration) or others not included in the

emaining terms; it is generally zero, except in the rotating duct

ase due to the pseudo-forces arising from a non-inertial reference

rame ( Section 4.3 ). 

.2. Equation of continuity 

Conservation of mass, assuming an incompressible fluid with

onstant density ρ: 

 · u = 0 (2) 

.3. Rheological models 

In addition to the Newtonian fluid ( τs = ηs ˙ γ , when viewed as

he solvent, and τ = 0 in Eq. (1 )), we consider the following three

ypical constitutive differential models: 
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Table 1 

Computational cost for start-up of channel flow: number of iterations required by the var- 

ious constitutive models and solution methods. 

FENE-MCR FENE-CR FENE-P 

Mesh 101 × 101 Method 1 Method 1 Method 2 Method 1 Method 2 

Total number iter. 6142 24,069 5765 33,769 6699 

Average n ° iter. 3.07 12.03 2.88 16.88 3.35 

Max. iter. per �t 4 25 4 29 5 

Iter. per �t at end 3 5 2 13 3 
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Model FENE-MCR [7] : 

τ + 

λ

f 

D τ

Dt 
= ηp ˙ γ + 

λ

f 

(
τ · ∇u + ∇ u 

T · τ
)

(3)

Model FENE-CR [3] : 

τ + λ
D 

Dt 

(
τ

f 

)
= ηp ˙ γ + 

λ

f 

(
τ · ∇ u + ∇ u 

T · τ
)

(4)

Model FENE-P [1,2] : 

τ + λ
D 

Dt 

(
τ

f 

)
= 

a ηp 

f 
˙ γ + 

λ

f 

(
τ · ∇ u + ∇ u 

T · τ
)

− I 
D 

Dt 

(
a ηp 

f 

)
(5)

In all models, the extensibility function is 

f = 

(
L 2 + (λ/a ηp ) tr(τ) 

)(
L 2 − 3 

) (6)

and the following are constant parameters of the models: λ- re-

laxation time (at zero deformation rate); L 2 - maximum extensibil-

ity (sometimes defined as b = L 2 − 5 ); ηp - polymer contribution to

the viscosity (at zero deformation rate; in Table 1 of Bird [34] –

an excellent review of kinetic theory of polymeric liquids – it is

given ηp = (b/ (b + 5)) nkT λ in terms of kinetic model parameters,

which is consistent with our notation in Eq. (5 ) and the rela-

tionship b = L 2 − 5 ); a - constant used for the FENE-P, with value

a = 

L 2 

L 2 −3 
= 

(b+5) 
(b+2) 

, and meaning a = f equil. (at equilibrium the poly-

mer stress is zero, cf. [34] Eq. (16 )). For the FENE-MCR and FENE-

CR models there is no need to use the a constant and we put a = 1 .

Collecting the above constitutive models in a single equation,

we qualify as FENE-P type equations those we may write as: 

τ + 

∇ ︷ ︸︸ ︷ (
λτ

f 

)
= η′ 

p ˙ γ + g 

(
τ, ˙ γ , Inv (τ) 

)
(7)

where ∇ is the Oldroyd upper-convected derivative [4] , λ is gener-

ally constant and η′ 
p is either the constant polymer contribution to

the viscosity ( ηp ) or a polymer viscosity function that depends on

invariants of τ , as does the function g comprising terms such the

substantial derivative of ηp / f (in Eq. (5 )) or those resulting from

the lower-convected derivative (if present), or others from more

sophisticated molecular based models. 

2.4. Reduced stress FENE-P model 

It is evident from Eqs. (5) (or (4) ) and (6) that the time ad-

vancement of the stress components τ ij should be accompanied by

a simultaneous time advancement of the function f which, in turn,

depends on the stress components through the trace τ kk . Such in-

herent non-linearity cannot be accommodated by the usual tempo-

ral integration methods for the constitutive equations (like the Eu-

ler explicit or implicit, Crank–Nicolson, three time-level schemes,

or variations thereof) and so the stresses in the function f ( τ kk )

must lag the newly calculated stress in an iterative sequence giving

rise to a slow-down of the simultaneous τ ij / f time advancement

procedure. Since f ( τ ) is an increasing function of τ (because τ
kk kk kk 
s always positive), when τ ij increases with time the option of ad-

ancing τi j / f (τ ∗
kk 

) (where the asterisk in τ ∗
i j 

indicates the value of

ij at the previous iteration) gives a smaller stress increment when

ompared to the simultaneous advancement of τ ij / f ( τ kk ). As a con-

equence, more iterations will be necessary to bring the terms into

alance, often implying an oscillating path to convergence. In the

ppendix, a more quantitative argument is given for the deteriora-

ion of convergence rate when an approximate 1D version of the

quation for τ xx is advanced, instead of τ xx / f ( τ xx ). 

It appears therefore that convergence gains can be achieved if

he quantity being advanced in time when the constitutive equa-

ions are integrated is τ ij / f instead of τ ij . In addition, it turns out

hat the equations are only marginally affected by changing the de-

endent variable from τ ij to τ ij / f , as it is now shown. 

The reduced stress is defined by the ratio of the polymer stress

o the extensibility function, as: 

′ ≡ τ/ f (8)

Similarly, we may define a reduced polymer viscosity as: 

′ 
p ≡ a ηp / f . (9)

eing clear that this viscosity is variable, decreasing as the trace of

he polymer stress increases. 

These definitions are introduced into the FENE-P equation

bove, giving readily: 

f · τ ′ + λ
D τ ′ 
Dt 

= η′ 
p ˙ γ + λ

(
τ ′ · ∇u + ∇ u 

T · τ ′ ) − I 
D η′ 

p 

Dt 
(10)

hile a simple manipulation of the extensibility functions allows it

o be re-written in terms of τ ′ as: 

f = 

L 2 (
L 2 − 3 − (λ/a ηp ) tr( τ ′ ) 

) (11)

These are the equations for the reduced FENE-P model, to be

mplemented numerically in what we shall denote "method 2 ′ ’,
hile the method for the original FENE-P equation will be referred

o as “method 1” (that used in previous publications, eg, [18] ). 

It is instructive to divide the reduced FENE-P Eq. (10) by the

xtensibility functions so that it becomes analogous to the FENE-

CR equation: 

′ + 

λ

f 

D τ ′ 
Dt 

= 

η′ 
p 

f 
˙ γ + 

λ

f 

(
τ ′ · ∇u + ∇ u 

T · τ ′ ) − I 
1 

f 

D 

Dt 

(
η′ 

p 

)
(12)

Clearly, if we make the identifications τ ′ ⇔ τ and η′ 
p ⇔ ηp , the

wo Eqs. (3) and (12) have similar form, except for the last term,

hich is specific to the FENE-P model, and the fact that in this

odel the viscosity is shear-thinning (seen here in the division of

he polymer viscosity term – that multiplied by the shear rate –

y the function f ). So, we hope that the numerical behaviour of

he new reduced-stress method will be akin to that of the stan-

ard method with the FENE-MCR model, which, as we have al-

eady commented, is the easiest in respect to numerical stability

nd efficiency. 
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Fig. 2. Representation of a 1D cell and notation for neighbouring cells. 
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.5. Simplified equations for 1D flow case 

To make the differences between methods easier to follow and

o facilitate the explanation of the numerical procedure of the next

ection, we restrict the general equations given above in vector

orm to the 1D flow case corresponding to start-up of channel flow.

For this problem, of fully developed flow in a channel lying

n the ( x, y ) plane, subject to a constant pressure gradient P =
∂ p/∂ x , the only non-zero velocity component is u , which varies

ith y and t , and the only non-zero stress components are τ xy 

shear) and τ xx (normal) (although for the FENE-P the transversal,

r secondary, normal components, τ yy e τ zz , are also non-zero and

qual to each other). 

Using the FENE-P as representative rheological model, since the

thers may be obtained by appropriate simplifications, the equa-

ions above ( Eqs. (1 ), ( 5 ) and ( 6 )) reduce to: 

∂u 

∂t 
= P + ηs 

∂ 2 u 

∂ y 2 
+ 

∂ τxy 

∂y 
(13a) 

xy + λ
∂ 

∂t 

(
τxy 

f 

)
= 

a ηp 

f 

∂u 

∂y 
+ 

λp 

f 

∂u 

∂y 
τyy (13b) 

xx + λ
∂ 

∂t 

(
τxx 

f 

)
= 2 λ

τxy 

f 

∂u 

∂y 
− a ηp 

∂ 

∂t 

(
1 

f 

)
(13c) 

yy + λ
∂ 

∂t 

(
τyy 

f 

)
= −a ηp 

∂ 

∂t 

(
1 

f 

)
; τzz = τyy (13d) 

nd function 

f = 

(
L 2 + (λ/a ηp ) τkk 

)
/ 
(
L 2 − 3 

)
(13e) 

ith 

kk = tr(τ) = τxx + τyy + τzz = τxx + 2 τyy . (13f)

It is noted that the velocity is only directly affected by the shear

omponent of the polymeric stress τ xy , but the normal compo-

ents τ xx and τyy = τzz affect τ xy through the function f = f ( τkk )

for the FENE-MCR and CR, we have τkk = τxx ). In the case of the

ENE-P, τ yy has also a direct influence on τ xy , last term of Eq. ( 13b )

but not in the case of the FENE-MCR and CR, since τyy = 0 ). 

Now, using the reduced-stress the equation of motion (Eq.

 13a )) remains unaltered and the constitutive equations become:

f τ ′ 
xy + λ

∂ τ ′ 
xy 

∂t 
= 

a ηp 

f 

∂u 

∂y 
+ λτ ′ 

yy 
∂u 

∂y 
(14a) 

f τ ′ 
xx + λ

∂ τ ′ 
xx 

∂t 
= 2 λτ ′ 

xy 
∂u 

∂y 
− a ηp 

∂ 

∂t 

(
1 

f 

)
(14b)

f τ ′ 
yy + λ

∂ τ ′ 
yy 

∂t 
= −a ηp 

∂ 

∂t 

(
1 

f 

)
(14c) 

f = f ( τ ′ 
kk ) = L 2 / 

(
L 2 − 3 − (λ/a ηp ) τ

′ 
kk 

)
. (14d)

.6. Non-dimensional variables and parameters 

Dimensionless parameters relevant to the present flow prob-

ems, with a channel or a duct half-height H , an average velocity

n steady state U , and a pressure gradient P , are: 

- elasticity, elastic number E = η0 λ/ρH 

2 ; 

- elasticity (alternative), Deborah number De = λU/H; 

- extensibility L 2 (or b = L 2 − 5 ); 
- polymer concentration, β = ηs / η0 (with η0 = ηs + ηp ). a  
Although the previous equations are dimensional, they may

e viewed as non-dimensional by assigning: ρ = 1 ; η0 = 1 ; ηp =
 − β; ηs = β; U = 1 ; H = 1 ; λ = E and P = 3 (for constant viscos-

ty channel flow, using Poiseuille’s law U = P H 

2 / 3 μ). Time is then

ormalized with a diffusion time scale, t ≡ t /( ρH 

2 / η0 ); velocity as

 ≡ u / U ; and stresses as τ ij ≡ τ ij /( η0 U / H ). For the constant viscos-

ty models (Newtonian, FENE-MCR and FENE-CR) the value of the

onstant pressure gradient is chosen so that the average velocity

ecomes unity and, in this case, we have also λ = De . However, for

he FENE-P model whose shear viscosity in steady state is shear-

hinning ( η( ̇ γ ) decreases as the shear-rate ˙ γ increases), when we

ut P = 3 in a channel flow the average velocity in steady state be-

omes larger than unity ( U > 1), and so the effective Deborah num-

er will be larger than the imposed Deborah number (we will have

e ≡ De × U ). When appropriate those differences are explicitly in-

icated. 

. Discretization and numerical method 

Discretization of the differential equations and explanation of

he numerical method, of the finite volume type, are here de-

cribed with some detail for the simplest problem of start-up of

ully-developed channel flow. 

For this simple problem, velocity and stress vary with time t

nd the lateral spatial coordinate y . Discretization equations, the

lgebraic counterpart of the differential ones, are obtained by in-

egrating the differential equations of the previous section over a

ontrol volume �y and over a time step �t . Spatial integration is

ased on central differences and on the middle-point rule (both

f 2nd order accuracy). Temporal integration is based on either

he Euler implicit method (of 1st order accuracy) or the three-

ime level method (of 2nd order accuracy). The former is employed

n the present description, to avoid unnecessary complications at

his point, while the latter is actually used in the computations.

ime levels are indicated by indices n (present time) and n + 1 (fu-

ure time, to be determined), while the time step is here assumed

onstant �t = t n +1 − t n . Since the temporal integration is fully im-

licit, all terms in the right-hand side of the differential equations

ill be approximated at the new time level n + 1 , which implies

he need for iteration (the outer iterations, to distinguish from the

nner iterations in the iterative linear-equation solver). Spatial po-

itions follow the usual notation for control volumes in the finite

olume method (see Fig. 2 ): central node P , node to the right E

“East”), node to the left W (“West”); positions at the faces of the

ontrol volume centred at P are indicated by small lettering e and

 . 

.1. Equation of motion 

Straightforward integration of Eq. ( 13a ) with the Euler scheme

nd central differences gives: 

ρ�y 

�t 

(
u 

n +1 
P − u 

n 
P 

)
= P + 

(
ηs 

u 

n +1 
E 

− u 

n +1 
P 

�y 

)
−

(
ηs 

u 

n +1 
P 

− u 

n +1 
W 

�y 

)
+ ( τxy ) 

n +1 
e − ( τxy ) 

n +1 
w 

hich is written under standard form as: 

 P u 

n +1 = a E u 

n +1 + a W 

u 

n +1 + b (15a)
P E W 
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with coefficients: 

a E = ηs / �y ; a W 

= ηs / �y ; a n P = ρ�y/ �t; a P = a E + a W 

+ a n P 

(15b)

and source term: 

b = a n P u 

n 
P + P + 

[
( τxy ) 

n +1 
e − ( τxy ) 

n +1 
w 

]
(15c)

The set of equations represented by Eq. ( 15a ) is tri-diagonal and

may be solved with the TDMA algorithm (for this simple problem,

there is no need for inner iterations: the TDMA acts as a direct

solver). Boundary conditions for the velocity are assigned by as-

suming no-slip at walls, y = −H and y = + H. Stress components

at the faces of control volumes, which arise from the divergence

source term ∇ · τ ≡ �τxy,P = τxy,e − τxy,w 

, are calculated with the

usual technique [9] (for any face f ): 

( τxy ) f = ( τxy ) f + ηp 

�u f 

�y 

(
1 

a τ
P 
/ �y 

)
f 

−
(

ηp �u P 

a τ
P 

)
f 

(16)

Average values, indicated by the over-line, are obtained by lin-

ear interpolation (in the 1D codes, with uniform mesh, this is

the same as doing arithmetical averaging). Boundary conditions

are also required in the momentum equation for the stresses at

the walls; a local Couette approximation is not viable in unsteady

flows [31] and we use here instead either the approach described

in that reference or a simpler alternative: the stress components

are linearly extrapolated, from the two closer adjacent nodes, to

the wall (Prof. M.A. Alves, personal communication). 

3.2. FENE-P equation 

In the absence of convective terms, the stress components at

control volume P are disconnected from the stresses at the sur-

rounding control volumes. The solution of the equations can then

be obtained by successive substitution, without the need of calling

the tri-diagonal solver. 

3.3. Method 1 

Integration of Eqs. (13b) –( 13d ) with the implicit Euler method

gives: 

�y (τxy ) 
n +1 
P + 

λ�y 

�t 

(
(τxy ) 

n +1 
P 

f n +1 
P 

− (τxy ) n P 

f n 
P 

)
= 

a ηp 

f n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
+ 

λ

f n +1 
P 

(τyy ) 
n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
�y (τxx ) 

n +1 
P + 

λ�y 

�t 

(
(τxx ) 

n +1 
P 

f n +1 
P 

− (τxx ) n P 

f n 
P 

)

= 2 

λ

f n +1 
P 

τ n +1 
xy,P 

(
u 

n +1 
e − u 

n +1 
w 

)
− a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)

�y (τyy ) 
n +1 
P + 

λ�y 

�t 

(
(τyy ) 

n +1 
P 

f n +1 
P 

− (τyy ) n P 

f n 
P 

)
=−a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
and the extensibility function (Eq. ( 13e )) is evaluated as: 

f n +1 
P = 

(
L 2 + ( λ

a ηp 
) 
(
( τxx ) 

n +1 
P 

+ 2( τyy ) 
n +1 
P 

))
(
L 2 − 3 

) . 

These equations are re-written under standard discretization

form as: 

a τP (τxy ) 
n +1 
P = b τxy + a τ,n 

P 
(τxy ) 

n 
P (17a)

a τP (τxx ) 
n +1 = b τxx + a τ,n (τxx ) 

n 
P (17b)
P P 
 

τ
P (τyy ) 

n +1 
P = b τyy + a τ,n 

P 
(τyy ) 

n 
P (17c)

ith coefficients and source terms: 

 

τ
P = �y 

(
1 + 

λ

f n +1 
P 

�t 

)
(17d)

 

τ,n 
P 

= �y 

(
λ

f n 
P 
�t 

)
(17e)

 

τxy = 

a ηp 

f n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
+ 

λ

f n +1 
P 

( τxy ) 
n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
(17f)

 

τxx = 

2 λ( τxy ) 
n +1 
P 

f n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
− a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
(17g)

 

τyy = −a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
(17h)

The iteration cycle carried out inside each time step, here writ-

en in a simplified form (when not specified, variables are evalu-

ted at the central node P ), becomes: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(
ρ�y 

�t 
+ a E + a W 

)
u 

∗
P = a E u 

∗
E + a W 

u 

∗
W 

+ P + �τ ∗
xy,P + 

ρ�y 

�t 
u 

n 
P 

f ∗ = 

(
L 2 + (λ/a ηp ) 

(
τ ∗

xx + 2 τ ∗
yy 

))(
L 2 − 3 

)
�y 

(
1 + 

λ

f ∗�t 

)
τ ∗

yy = 

λ�y 

f n �t 
τ n 

yy −
a ηp �y 

�t 

(
1 

f ∗
− 1 

f n 

)
�y 

(
1 + 

λ

f ∗�t 

)
τ ∗

xy = 

a ηp 

f ∗
�u 

∗
P + 

λ

f ∗
τ ∗

yy �u 

∗
P + 

λ�y 

f n �t 
τ n 

xy 

�y 

(
1+ 

λ

f ∗�t 

)
︸ ︷︷ ︸ 

a τ
P 

τ ∗
xx = 2 λ

τ ∗
xy 

f ∗
�u 

∗
P + 

λ�y 

f n �t 
τ n 

xx −
a ηp �y 

�t 

(
1 

f ∗
− 1 

f n 

)

τ ∗
xy,e = τ ∗

xy e 
+ 

�u 

∗
e 

�y 

(
η′ 

p 

a τ
P 
/ �y 

)
e 

−
(
η′ 

p �u 

∗
P 

a τ
P 

)
e 

(with η′ 
p =a ηp / f 

∗) 

(18)

In the equation of motion, the stress difference is �τ ∗
xy,P 

=
∗
xy,e − τ ∗

xy,w 

, where the shear stress components at cell faces are

alculated with the special interpolation method [9] given in the

ast line. In the stress equations, the difference of velocities is

u ∗
P 

= ū ∗e − ū ∗w 

, where velocities at cell faces are obtained by lin-

ar interpolation, for example ū ∗e = 0 . 5( u ∗P + u ∗E ) . 
The order of solution of the several stress equations is chosen

o that the source terms may be evaluated with the most recent

tress values: first we calculate τ yy whose value goes immediately

o the next equation to be solved, for τ xy ; the last equation is

or τ xx which possesses a source term in τ xy . After having calcu-

ated the stresses at all nodal locations, we apply the special in-

erpolation for the cell faces; the central coefficient of the stress

quations is a τ
P 

= �y ( 1 + λ/ ( f ∗�t) ) or, in intensive form, a τ
P 
/ �y =

( 1 + λ/ ( f ∗�t) ) . The difference of velocities at e.g. the "east" face is

u ∗e = u ∗E − u ∗P , which is evaluated directly at the face without the

eed of any interpolation. The two last terms in the expression for

he shear stress at the "east" face represent the difference between

he interpolated velocity gradient and the one evaluated directly at

he face; they prevent the occurrence of stress oscillations. With a

niform mesh, the �y in the middle term may be included in the

inear interpolation and the final expression becomes simpler, with

 

τ in the denominator instead of a τ / �y . 

P P 
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The iterative cycle inside each time step is repeated until the

arger residual of all equations becomes smaller than a given toler-

nce. Residuals are evaluated as: 

es (u ) = 

∑ 

P 

∣∣∣∣a P u 

∗
P −

(
a E u 

∗
E + a W 

u 

∗
W 

+ P + �τ ∗
xy,P + 

ρ�y 

�t 
u 

n 
P 

)∣∣∣∣
(19a) 

es (τxy ) = 

∑ 

P 

∣∣∣∣�y 

(
1 + 

λ

f ∗�t 

)
τ ∗

xy 

−
(

a ηp 

f ∗
�u 

∗
P + 

λ

f ∗
τ ∗

yy �u 

∗
P + 

λ�y 

f n �t 
τ n 

xy 

)∣∣∣∣ (19b) 

es (τxx ) = 

∑ 

P 

∣∣∣∣�y 

(
1 + 

λ

f ∗�t 

)
τ ∗

xx 

−
[

2 λ
τ ∗

xy 

f ∗
�u 

∗
P + 

λ�y 

f n �t 
τ n 

xx −
a ηp �y 

�t 

(
1 

f ∗
− 1 

f n 

)]∣∣∣∣
(19c) 

es (τyy ) = 

∑ 

P 

∣∣∣∣�y 

(
1 + 

λ

f ∗�t 

)
τ ∗

yy 

−
[

λ�y 

f n �t 
τ n 

yy −
a ηp �y 

�t 

(
1 

f ∗
− 1 

f n 

)]∣∣∣∣ (19d) 

 esid = max { r es (u ) , r es (τxy ) , r es (τxx ) , r es (τyy ) } ⇒ r esid < T OL 

(19e) 

here the sums are carried out over all internal grid points at

he centres of the control volumes forming the mesh. After hav-

ng achieved iterative convergence, we assign the converged val-

es to the new time level u n +1 
P 

= u ∗P , τ
n +1 
xy,P 

= τ ∗
xy,P , τ

n +1 
xx,P 

= τ ∗
xx,P and

n +1 
yy,P 

= τ ∗
yy,P 

, and proceed to the next time level ( n → n + 1 ). 

.4. Method 2 

Integration of the reduced-stress equations ( Eqs. (14a )–( 14c ))

ives: 

y f n +1 
P ( τ ′ 

xy ) 
n +1 
P + 

λ�y 

�t 

(
( τ ′ 

xy ) 
n +1 
P − ( τ ′ 

xy ) 
n 
P 

)
= 

a ηp 

f n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
+ λ( τ ′ 

yy ) 
n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
y f n +1 

P ( τ ′ 
xx ) 

n +1 
P + 

λ�y 

�t 

(
( τ ′ 

xx ) 
n +1 
P − ( τ ′ 

xx ) 
n 
P 

)
= 2 λτ ′ n +1 

xy,P 

(
u 

n +1 
e − u 

n +1 
w 

)
− a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
y f n +1 

P ( τ ′ 
yy ) 

n +1 
P + 

λ�y 

�t 

(
( τ ′ 

yy ) 
n +1 
P − ( τ ′ 

yy ) 
n 
P 

)
= −a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
nd an extensibility function, 

f n +1 
P = 

L 2 (
L 2 − 3 − ( λ

a ηp 
) 
(
( τ ′ 

xx ) 
n +1 
P 

+ 2( τ ′ 
yy ) 

n +1 
P 

))
hich are re-written under standard form: 

 

τ ′ 
P ( τ

′ 
xy ) 

n +1 
P = b τ

′ 
xy + a τ

′ ,n 
P 

( τ ′ 
xy ) 

n 
P (20a)

 

τ ′ 
P ( τ

′ 
xx ) 

n +1 
P = b τ

′ 
xx + a τ

′ ,n 
P 

( τ ′ 
xx ) 

n 
P (20b)
 

τ ′ 
P ( τ

′ 
yy ) 

n +1 
P = b τ

′ 
yy + a τ

′ ,n 
P 

( τ ′ 
yy ) 

n 
P (20c)

ith coefficients and source terms: 

 

τ ′ 
P = �y 

(
f n +1 
P + 

λ

�t 

)
(20d) 

 

τ ′ ,n 
P 

= 

λ�y 

�t 
(20e) 

 

τ ′ 
xy = 

a ηp 

f n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
+ λ( τ ′ 

yy ) 
n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
(20f) 

 

τ ′ 
xx = 2 λ( τ ′ 

xy ) 
n +1 
P 

(
u 

n +1 
e − u 

n +1 
w 

)
− a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
(20g) 

 

τ ′ 
yy = −a ηp �y 

�t 

(
1 

f n +1 
P 

− 1 

f n 
P 

)
(20h) 

The iterative cycle within each time step is now: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(
ρ�y 

�t 
+ a E + a W 

)
u 

∗
P = a E u 

∗
E + a W 

u 

∗
W 

+ P + �τ ∗
xy,P + 

ρ�y 

�t 
u 

n 
P 

f ∗ = 

L 2 (
L 2 − 3 − (λ/a ηp ) 

(
τ ′ ∗

xx + 2 τ ′ ∗
yy 

))
�y 

(
f ∗ + 

λ

�t 

)
τ ′ ∗

yy = 

λ�y 

�t 
τ ′ n 

yy −
a ηp �y 

�t 

(
1 

f ∗
− 1 

f n 

)
�y 

(
f ∗ + 

λ

�t 

)
τ ′∗

xy = 

a ηp 

f ∗
�u 

∗
P + λτ ′ ∗

yy �u 

∗
P + 

λ�y 

�t 
τ ′ n 

xy 

�y 

(
f ∗+ 

λ

�t 

)
︸ ︷︷ ︸ 

a τ
′ 

P 

τ ′ ∗
xx =2 λτ ′∗

xy �u 

∗
P + 

λ�y 

�t 
τ ′ n 

xx −
a ηp �y 

�t 

(
1 

f ∗
− 1 

f n 

)

τ ∗
xy,e = fτ ′∗

xy e 
+ a ηp 

�u 

∗
e 

�y 

(
1 

(a τ
′ 

P 
/ f ∗) / �y 

)
e 

−
(

a ηp �u 

∗
P 

a τ
′ 

P 
/ f ∗

)
e 

(21) 

Notice that the equation of motion is the same as in method 1,

ith the stress divergence term based on the usual stress compo-

ents τ xy (evaluated at the control volume faces), while the con-

titutive equations are expressed in terms of the modified stresses
′ 
xy = τxy / f , τ ′ 

xx = τxx / f e τ ′ 
yy = τyy / f . The central coefficient in

he stress equations is now that of method 1 multiplied by the

unction f , that is (a τ
P 
) pre v ious = (a τ

P 
) now 

/ f ∗. 

.5. Three-time level scheme 

As mentioned above, for the sake of improved accuracy the

emporal discretization employed in the actual computations is

ased on the three-time level scheme [ 35 , Table 8.I, pp. 190],

hich is here implemented in a slightly modified version, allowing

or variable time-step sizes. Any of the previous governing equa-

ions (Eq. (13) ) may be written as 

∂φ

∂t 
= H(φ) 

here φ stands for the dependent variable, either a velocity or a

tress component, and H ( φ) is an operator comprising convective

nd diffusive terms, and the remaining source terms if they exist.

ith a fully-implicit temporal discretization, this equation is ap-

roximated as: 

∂φ

∂t 

)n +1 

= H( φn +1 ) ≡ H 

n +1 
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o  
and the time derivative at the new time level t n +1 is obtained by

linear extrapolation of its value at the two precedent time levels,

 

n + 1 2 and t n −
1 
2 , as: 

( ∂ φ/∂ t ) 
n +1 − ( ∂ φ/∂ t ) 

n + 1 
2 

�t n / 2 

= 

( ∂ φ/∂ t ) 
n + 1 

2 − ( ∂ φ/∂ t ) 
n − 1 

2 (
�t n + �t n −1 

)
/ 2 

where varying the time steps are defined as �t n = t n +1 − t n 

and �t n −1 = t n − t n −1 . With the time-step ratio denoted as r =
�t n / �t n −1 , this formula is re-arranged to 

( ∂ φ/∂ t ) 
n +1 = ( 1 + r/ (1 + r) ) ( ∂ φ/∂ t ) 

n + 1 
2 − ( r/ (1 + r) ) ( ∂ φ/∂ t ) 

n − 1 
2 

and after approximating the derivatives with central differences in

time (2nd order accurate), 

( ∂ φ/∂ t ) 
n +1 = ( 1 + r/ (1 + r) ) 

(
φn +1 − φn 

�t n 

)

− ( r/ (1 + r) ) 

(
φn − φn −1 

�t n −1 

)
we arrive at the final expression for the three-time level scheme:

( ∂ φ/∂ t ) 
n +1 = 

( 1 + r/ (1 + r) ) φn +1 − (1 + r) φn + r 2 / (1 + r) φn −1 

�t n 
. 

(22)

This expression should be substituted for the simpler Euler ap-

proximation (∂ φ/∂ t) n +1 = ( φn +1 − φn −1 ) / �t used in the previous

sub-sections. It is useful to see how it simplifies in some limiting

cases. For a constant time-step interval, r = 1 , we obtain: 

( ∂ φ/∂ t ) 
n +1 = 

3 
2 
φn +1 − 2 φn + 

1 
2 
φn −1 

�t 

which is the usual expression given for the three-time level

method in standard references [18,19,28–30,35] . When the time

step is halved ( r = 1 / 2 ), as occurs when convergence within a �t

cannot be achieved, we have 

( ∂ φ/∂ t ) 
n +1 = 

4 
3 
φn +1 − 3 

2 
φn + 

1 
6 
φn −1 

�t n 

and when the time step is doubled ( r = 2 ), as occurs when the

temporal variation of the solution is smooth, 

( ∂ φ/∂ t ) 
n +1 = 

5 
3 
φn +1 − 3 φn + 

4 
3 
φn −1 

�t n 

The larger the factor multiplying φn +1 the better, as the diag-

onal dominance of the corresponding matrix equation is thus in-

creased; this is the case for r = 2 . However, the larger the coeffi-

cient of φn −1 the more problematic is the scheme, since this term

is negative when moved to the right-hand side of the discretization

equation and this impedes stability; the worst situation is again

r = 2 . 

In practice, it is useful to blend the above three-time level (3 TL )

scheme with the first-order implicit Euler scheme, using a blend-

ing factor 0 ≤κ ≤ 1, such that: 

( ∂ φ/∂ t ) 
n +1 = κ( ∂ φ/∂ t ) 

n +1 
3 T L + (1 − κ) ( ∂ φ/∂ t ) 

n +1 
Euler 

The expression for the time derivative after applying such

blending becomes: 

( ∂ φ/∂ t ) 
n +1 = 

(
1 + κ r 

1+ r 
)
φn +1 − (1 + κr) φn + κ r 2 

1+ r φ
n −1 

�t n 
(23)

which is the actual expression implemented in the multidimen-

sional code. For example, at the start of the flow, the φn −1 are

unknown and the Euler scheme must be used, by setting κ = 0 .

Normally, second order accuracy in time is desirable and the full

three-time level should be switched on, with κ = 1 . 
. Results 

The algorithm explained in the previous section was imple-

ented in both our 3D multidimensional general code and in sev-

ral small FORTRAN codes which solve the 1D startup flow in

hannels, for each specific constitutive model. These 1D codes are

imilar among them and essentially follow the algorithm employed

n the 3D code, thus serving to assess the results in a controlled

anner. 

As base values for the rheological parameters, often employed

n numerical simulation studies (see [18] and references therein),

e consider a typical extensibility parameter of L 2 = 100 , a solvent

iscosity ratio of β = 0 . 1 (in the assessment of numerical methods

nd benchmark problems a value often used is β = 1 / 9 ) and a rel-

tively high elasticity number E = 5 . In most runs the numerical

rid was uniform with either 51 or 101 internal control volumes

long each direction; an odd number of nodes is chosen so that a

ontrol volume is situated exactly at the central point of the chan-

el or the square cross-section duct. On these meshes the nom-

nal mesh spacing is thus �y ∼= 

1 / 25 = 0 . 04 or �y ∼= 

1 / 50 = 0 . 02 ,

hile the base time-step was �t = 0 . 01 in most runs but half of

hat value was employed when deemed necessary for convergence.

ith view of obtaining numerical solutions that are as accurate as

ossible, all simulations were based on the three-time level tempo-

al discretization (2nd order in �t ) and the convective fluxes in the

roblem of Section 4.3 were discretized with the CUBISTA scheme

36] (also formally of 2nd order accuracy). 

The next sections describe the results for the following prob-

ems, tackled in order of increased complexity: Section 4.1 deals

ith start-up of simple channel flow; Section 4.2 deals with start-

p of square cross-section duct flow; Section 4.3 deals with start-

p of rotating duct flow. 

.1. Start-up of simple channel flow 

Start-up flow in a channel corresponds to the transient regime

esulting from application of a constant pressure gradient P ≡
d p/d x to a fluid initially at rest, with the additional assumption

hat there are no variations of flow properties along the chan-

el (fully developed flow in space). It is a time varying, non-

omogeneous shear flow for which there are analytical solutions in

he case of Newtonian [37] and Oldroyd-B [32] fluids, thus serving

s a relatively simple test problem for time-dependent viscoelastic

ow assessment considered by many authors [14,16,19,20,28–31] ,

r as a way of imposing boundary conditions at inlet [38] . After a

ertain interval of time the flow becomes fully established and at-

ains a steady state. For a constant-viscosity fluid we have then a

oiseuille flow with a parabolic velocity profile 

 (y ) = 1 . 5 U 

[
1 − ( y/H ) 

2 
]

(24)

nd the average velocity U , which determines the flow rate Q =
 HU (the channel width is 2 H ), is related to the pressure gradient

y: 

 = P H 

2 / 3 μ. (25)

This solution is also valid for the FENE-MCR and FENE-CR mod-

ls, with the constant viscosity denoted by η0 = ηp + ηs instead

f μ. For the shear-thinning FENE-P model the solution at steady

tate is more involved but is available [39] thus enabling a check of

he code in this limiting situation of large time instants. The aver-

ge velocity for the Newtonian fluid given by Eq. (25) was chosen

s the normalising velocity scale in the following paragraphs; with

his equation, P = 3 gives U = 1 . 

Fig. 3 shows the time evolution of velocity at the central point

f the channel ( y = 0 ) for the models FENE-MCR, FENE-CR and
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Fig. 3. Time evolution of velocity at the channel centre for the models FENE-MCR, 

FENE-CR and FENEP: comparison of results from the 3D simulation code and the 

simplified 1D program. The Newtonian result is also included for comparison. 
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ENE-P, and compares predictions of the simpler 1D code ex-

lained in Section 3 with those of the general multidimensional

ode, here denoted 3D code, using method 2. The fact that the

esults of the two codes are visually coincident serves as an in-

irect demonstration that method 2 for the FENE-CR and FENE-P

odels was correctly implemented in the multidimensional com-

uter program. We emphasize that the 1D codes were written as

n extension of previous codes used for the UCM and Oldroyd-B

odels [31] where exact agreement with the theory was demon-

trated; they are sufficiently simple codes so that their correctness

ay be easily controllable (these 1D codes are available from the

uthor on request). We recall that the time shown in the abscissa

f Fig. 3 is normalized with a diffusion time scale and so, for E = 5 ,

he elapsed time in relaxation time units should be divided by

, as shown in the upper x-axis. At time instant t = 10 ( t = 2 λ),

he transient regime for the viscoleastic fluids is still evolving, but

t t = 20 ( t = 4 λ) the FENE-CR and FENE-MCR have practically at-

ained steady state since, after a couple of initial oscillations, the

entral velocity is very close to 1.5 (the theoretical value in fully

eveloped Poiseuille flow). The Newtonian fluid, shown for com-

arison, attains steady state much faster (at about t ≈ 2); a study

n the development time required by UCM and Oldroyd-B fluids,

nd its dependence on E and β , was presented by [40] (for E = 5

nd β = 0 . 1 , it gives a start-up time of t S = 27 . 2 , somewhat above

he largest time shown in the figure), but a similar study is missing
2 
or the FENE-P and the influence of L . 

ig. 4. Time evolution of the polymer stress components at a point close to the channel

omparison of results obtained with the 3D simulation code and the simplified 1D code. 
Both the shear and the main normal stresses are zero at the

entral line and so the stress evolution is shown at a location near

he wall (nodal point of the first cell adjacent to the wall, index

 , that is y = 0 . 99 for the mesh with 101 cells here employed).

ig. 4 compares the predicted stress variation obtained with the

D code and the main code, showing perfect agreement between

esults. These predictions were obtained with method 2 but, as

ill be shown in the next sub-section, there are virtually no dif-

erences between results of either method. After a couple of initial

scillations, the polymeric stress components for the two constant-

iscosity models should tend to their steady-state analytical val-

es at the wall: τxy,w 

= 3(1 − β) = 2 . 7 and τxx,w 

= 18 De (1 − β) /g

 29 . 7 (with g = ( L 2 + [ L 4 + 8( L 2 − 3) (3 De ) 2 ] 
1 / 2 

) / 2( L 2 − 3) = 2 . 730

41] ), very close to those predicted at t = 20 , as seen in the figure.

In the case of the FENE-P model, Figs. 3 and 4 show that the

entral velocity and the near wall stresses start deviating consid-

rably from the FENE-CR evolution at about t ≈ 4. Since the FENE-

 is a shear-thinning model, the application of the same pressure

radient P = 3 results in a larger flow rate, as seen in Fig. 3 with

 0 tending to a value above 3 (when the parabolic profile has

 0 = 1 . 5 ). The actual average velocity evaluated from the predicted

rofile when t > 20 and steady state is reached is U = 2 . 326 and so

he effective Deborah number corresponding to these FENE-P re-

ults is De = λU/H = 5 × 2 . 326 = 11 . 6 . 

We turn now to the main issue of the work, which is the su-

erior performance of the new method in terms of numerical ef-

ciency. Fig. 5 shows on the left plot the evolution of the number

f iterations per time step ( n it ) along the elapsed time, and on the

ight plot the total number of accumulated iterations ( N it, tot ). The

urves (in black) with symbols correspond to the standard method

method 1) and the curves (in red) without symbols to the new

ethod (method 2), where the reduced-stress is the main depen-

ent variable in the constitutive equations, with results shown for

he FENE-P and FENE-CR models. While the overall computational

ork to advance the solution from t = 0 to t = 20 is more directly

een from plot (b) representing the total number of iterations, from

hich we see that the FENE-CR with the old method requires

bout 4 times more work than with the proposed method, and

he FENE-P about 5 times more, such conclusions were already ap-

arent from plot (a). Method 2 requires approximately a constant

umber of iterations per time step (of about 4–5), for both the

ENE-CR and the FENE-P, along the entire time interval here sim-

lated. Method 1 on the other hand requires a large number of it-

rations per time step (25–30) during the initial stages of the time

volution, when elasticity tends to promote oscillations of velocity

nd stresses as the flow is being established. With the old method,
 wall for the various constitutive models ( E = 5 , L 2 = 100 , β = 0 . 1 , and �t = 0 . 01 ). 
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Fig. 5. Number of iterations required per time step (a) and total accumulated number of iterations (b) with a tolerance 10 −4 for the FENE-CR and FENE-P models and the 

two solution methods (new method: lower curves). Results for the FENE-MCR are also shown for comparison. 

Fig. 6. Velocity profile for the FENE-P model, with E = 5 and P = 3 , in fully- 

established regime: comparison of numerical predictions (at time t = 40 ) and theo- 

retical results. The parabolic profile is shown for comparison. U is here the FENE-P 

average velocity. 
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the FENE-P is seen to require more iterations per time step than

the FENE-CR, which is expected since the FENE-P equation is more

complicate and thus introduces further inter-linkages amongst the

equations for the various stress components. This figure also shows

results for the FENE-MCR (the method is irrelevant), highlighting

the fact that method 2 applied to FENE-P or FENE-CR behaves al-

most as the MCR with the standard method. 

Relevant values for the iteration counts required by the two

methods are given in Table 1 . We recall that the following pa-

rameters were fixed: β = 0 . 1 , L 2 = 100 , E = 5 (which corresponds

to De = 5 if U = 1 ), mesh NY = 101 (internal cells), �t = 0 . 01 and

time interval t = 0 − 20 . Method 2 is systematically faster than

method 1. 

We close this section by providing a more direct verification

of the predictions. This is done by comparing the numerical re-

sults under fully established conditions (at large times t ), when a

steady state regime has been reached, and the analytical solutions

available. Since the solution (velocity and shear stress profiles) for

the FENE-CR model is identical to that of the Newtonian fluid, it

is more interesting to look to FENE-P results where shear-thinning

immediately distorts the profiles. Fig. 6 shows velocity profiles pre-

dicted with the general simulation code with method 2 (there is

no effect of the method used) at a time instant t = 40 , and the

steady-state analytical solution of Cruz et al. [39] for the FENE-P.

These results are virtually indistinguishable, and deviate consider-
bly from the parabolic Poiseuille solution, also shown by the blue

ine. 

Profiles of the stress components compare also quite well

gainst the analytical solution, as shown in Fig. 7 for the same con-

itions. Stresses are normalized with η0 U / H where U is here the

verage velocity of the FENE-P fluid. The shear stress profile devi-

tes from the rectilinear shape, valid for the Newtonian and FENE-

R fluids, on account of shear thinning, while the normal stress

as an approximate quadratic variation with large values near the

alls, on account of normal-stress viscoelasticity. 

.2. Start-up of square cross-section flow 

In this sub-section we consider start-up of flow in a duct of

quare cross-section. Other aspect ratios could be envisaged but

or the present purpose the square shape is deemed adequate.

he central axis of the duct is placed at the origin of the co-

rdinate system, y = z = 0 , and the lateral and top/bottom walls

re at y = ±H and z = ±H, with the square half-side H = 1 in

erms of non-dimensional quantities. Two uniform meshes were

eployed on this square domain, one with 51 × 51 cells (nomi-

al mesh spacing �y = �z ≈ 0 . 04 ) and the other with 101 × 101

ells ( �y = �z ≈ 0 . 02 ). As commented above, the choice of form-

ng the mesh with an odd number of cells has the consequence

hat a nodal point is placed exactly at the geometrical centre of

he domain, which is useful to see how the results vary with mesh

efinement without the need of doing interpolations between the

arious meshes. For large times the flow tends to steady state and,

f the fluid has a constant shear viscosity (as the FENE-CR model),

he velocity field is then identical to that of the Newtonian fluid,

ith a known analytical solution for a 2 a × 2 b rectangular cross-

ection (see e.g. White [33] p. 120): 

 = 

P a 2 

3 μ

[ 

1 − 192 a 

b 

∞ ∑ 

j=1 , 3 ,... 

1 

( jπ) 
5 

tanh 

(
jπb 

2 a 

)] 

(26)

In order to have then a unit average velocity U = 1 in the

quare cross-section ( b/a = 1 , a ≡ H = 1 ), the pressure gradient

eeds to be P ≡ −d p/d x = 7 . 1135 , and the central velocity is u 0 =
 . 096 . We have decided to compare results for the same pressure

radient, and so we employ here, for all simulations, P = 7 . 1135 ,

ogether with E = 5 (that is λ = 5 ), L 2 = 100 , β = 0 . 1 (that is ηs =
 . 1 , ηp = 0 . 1 and η0 = 1 ). This means that for the FENE-P fluid the

verage velocity at steady state will be larger than unity; the sim-

lations give U = 2 . 92 (there is no analytical solution). 
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Fig. 7. Profiles of shear and normal stresses for the FENE-P model in steady state: comparison of numerical predictions (at t = 40 ) and theoretical results. Normalization 

with the FENE-P average velocity U . 

Fig. 8. Evolution of (a) axial velocity component at central point, and (b) axial shear stress at a point close to the lateral wall. Comparison of the results for the two methods 

with three constitutive models (Mesh 101 × 101; time step �t = 0 . 004 ). 
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First, we demonstrate that the two methods used to solve nu-

erically this problem yield the same physical results. Fig. 8 show

he x -velocity component at the central point of the cross-section

 u 0 ) and the xy -component of the shear stress at a point adja-

ent to the lateral wall ( τxy,w 

= τxy (y = 0 ; z = −0 . 990) ), during the

ransient regime corresponding to the start-up of the flow. These

redictions were obtained on the finer mesh, with 101 × 101 cells.

e let time evolve from zero to 20 (recall, diffusive time scale

 

2 /( η0 / ρ)) which seems sufficient for the flow to attain a steady

tate, after a few oscillations typical of viscoelastic flow with a

on-zero solvent viscosity [14,16,31,32,38] . After the first oscilla-

ion the FENE-P model follows a different path of evolution com-

ared to the constant viscosity models, and takes longer to attain

 steady regime. At large times, the central velocity for the FENE-

 tends to 5.34, or u 0 /U = 1 . 83 if made non-dimensional with the

ENE-P average velocity ( U = 2 . 917 ), being thus smaller than that

or the constant-viscosity fluids, an effect due to shear-thinning.

nitially all models follow the same curve, but afterwards the am-

litude and frequency of the response differ. The main point for

he present purposes is that the two methods, the standard stress

ethod (method 1) and the reduced stress method (method 2),

redict the same numerical solution (coincidence of the curves in

he figure), thus reinforcing confidence in the correct implementa-

ion of the new method. The FENE-MCR solution is shown for the
urpose of comparison against the FENE-CR; it was obtained with

ethod 1. 

The distribution of the number of iterations per time step dur-

ng the simulation using the two methods is shown in Fig. 9 , for

he FENE-P ( Fig. 9 a) and FENE-CR ( Fig. 9 b), and comparing the re-

uirements of two meshes 51 × 51 and 101 × 101. Again, the re-

uced stress method (method 2) requires a much smaller num-

er of iterations, tending to about 3–4 iterations at each �t as

he steady state is approached and a somewhat larger number in

he initial part of the simulation when the strong dynamical os-

illations due to viscoelasticity are felt. The iteration numbers are

nsensitive to the mesh fineness. On the other hand, the method

reviously employed uses many iterations per time step (raising

o about 50–60, in the initial stages, for the convergence tolerance

f 10 −4 here employed), these tend to rise appreciably when the

esh is refined, and things are worst for the more complex FENE-

 model, while the FENE-CR shows a more marked decay of n it as

he flow evolves to the steady state (which should be attained not

oo later than t = 20 ). It is interesting to observe from Fig. 9 b the

ave-like evolution of the number of iterations per time step for

he FENE-CR which is the result of the propagation of the stress

iscontinuities created when the flow is initiated (near each chan-

el wall), travelling from wall to wall with a wave speed propor-

ional to 
√ 

(1 − β) /E and interfering at the central line every 2.36
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Fig. 9. Number of iterations per time step as a function of time for the square duct start-up case without rotation. Comparison of the results for the two methods on two 

grids (51 × 51 and 101 × 101): (a) FENE-P; (b) FENE-CR. 

Fig. 10. Total accumulated number of iterations as a function of time for the square duct case without rotation. Comparison of the two methods on the two grids. (a) 

FENE-P; (b) FENE-CR. 
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time intervals (see Eq. (27) in [39] for Oldroyd-B fluid, taken as an

approximation to the FENE-CR). 

Computational work and speed of calculations should be pro-

portional to the total number of iterations N it, tot and these are

shown as a function of simulation time in Fig. 10 a for the FENE-

P model and Fig. 10 b for the FENE-CR, where results obtained with

the two methods on two meshes are compared. Method 1 requires

a much smaller number of total iterations compared to method 2

(about 8 times less on mesh 51 × 51, and 9 times less on mesh

101 × 101). In addition, method 2 is less affected by the degree

of mesh refinement, the figure showing just a marginal increase

of N it, tot when the number of grid points is quadruplicated. Rele-

vant data for computational cost assessment in this test problem is

provided in Table 2 . These data for the FENE-P model on the fine

mesh show a speed-up of 9.4 fold in terms of CPU time (which

should depend on the machine employed) and 8.8 fold in terms of

total number of iterations (independent of the machine), at simu-

lation time t = 20 . The average number of outer iterations in each

time step raises from about 4 with the reduced-stress method to

30 with the standard stress method. For the FENE-CR model the

corresponding ratios are 7.1 (CPU time) and 6.7 (total iterations). 

4.3. Start-up of rotating duct flow 

Here the duct is the same of the previous subsection, but now

it rotates about the vertical z -axis with speed 
. The flow is com-
uted in the non-inertial frame fixed to the rotating duct (same

,v,w velocity components as before) and so the relative movement

ives rise to a pseudo Coriolis force F C = −ρ2 � × v with compo-

ents: 

 C,x = 2 ρ
v , F C,y = −2 ρ
u, F C,z = 0 (27)

hich need to be added to the right-hand side of the momen-

um equations ( Eq. (1 )). We assume � = 
ˆ z , where 
 is the an-

ular velocity component about the z -axis. In non-dimensional

erms, 
 is the inverse of the Ekman number, usually defined as

k = ( η0 /ρ) / 
H 

2 , with, here, η0 = 1 , ρ = 1 and H = 1 . So, 
> 1

mplies preponderance of Coriolis rotational effects, since the time

cale related to frame rotation becomes smaller than the flow dif-

usion time and Ek < 1. We have tried various values of rotation

peed, from 0 to 10, but the results to be presented below are

or 
 = 2 . Note that the main effect of the Coriolis force results

rom its y -component, pushing fluid towards the left of the main

ow direction (i.e. in the minus y -direction) along the horizontal

entral plane ( z = 0 ) and thus creating a secondary flow, in the y-

 plane, composed by two counter-rotating recirculating cells (cf.

ig. 1 ). The x -component of the Coriolis force also acts to distort

he main (axial, along x ) velocity profile but since v 
 u its ef-

ect is much smaller than that of F C, y . Fig. 11 illustrates the sec-

ndary flow pattern by means of a velocity vector plot and the

orresponding streamlines for a Newtonian fluid. In this case, the

verage velocity is found to be slightly below unity, U = 0 . 992 , and
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Table 2 

Computational cost for the non-rotating duct case ( 
 = 0 ): number of iterations and computer times for the various 

constitutive models and solution methods. 

FENE-MCR FENE-CR FENE-P 

Method 1 Method 1 Method 2 Method 1 Method 2 

(a) Mesh 51 × 51 

Total number iter. 13,163 73,686 12,018 132,700 15,689 

Average n ° iter. 3.29 18.42 3.00 33.18 3.92 

Max. iter. per �t 5 51 6 54 6 

Iter. per �t at end 2 4 2 22 3 

CPU time (s) 170 869 148 1740 206 

(b) Mesh 101 × 101 

Total number iter. 17,811 106,322 15,871 188,716 21,432 

Average n ° iter. 3.56 21.26 3.17 37.74 4.29 

Max. iter. per �t 5 56 7 59 8 

Iiter. per �t at end 3 5 2 27 3 

CPU time (s) 768 4754 666 11,445 1224 

Fig. 11. Secondary flow pattern for the Newtonian fluid in steady state and fully-developed conditions with rotation 
 = 2 : (a) velocity vectors (maximum value V max = 

0 . 0939 ); (b) Streamlines (maximum value ψ max = 0 . 0282 ). 

Fig. 12. Evolution of the velocity at the central point for the three constitutive models when the duct rotates with velocity 
 = 2 . Comparison of results with the two 

methods (Mesh 101 × 101; time step �t = 0 . 004 ): (a) axial x -component; (b) lateral y -component. 
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he axial velocity at the central point u 0 = 2 . 060 is also somewhat

ower than the analytical result for the non-rotating case (2.096).

he magnitude of the larger velocity vector in the cross-section

lane is 9.4% of the main average velocity and the intensity of the

ow in recirculation is 2.8% of the axial flow rate. 

For the viscoelastic fluids, the evolution of velocity at the cen-

ral point is shown in Fig. 12 to be compared with Fig. 8 for the
on-rotating case. The two methods give the same predictions of

ll quantities in this complex flow problem, where all three ve-

ocity components, pressure, and the six stress components need

e computed, once more demonstrating the correct implementa-

ion of method 2 (which in fact is relatively easy to do in an exist-

ng code). Regarding physical aspects of the problem, we see that

he velocity fields (and also the stresses, not shown for brevity)
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Fig. 13. Secondary flow streamlines (top) and velocity vectors (bottom) during the transient start-up of FENE-P fluid in the rotating duct ( 
 = 2 ) at two time instants: t = 1 

(left column; upper cell rotates clockwise, streamfunction ψ < 0) and t = 2 (right column; upper cell rotates anti-clockwise, ψ > 0). Note V max = Max ( 
√ 

v 2 + w 

2 ) . 
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evolve differently for the three models, except in the initial times

(up to about half a relaxation time) when FENE-P and FENE-CR

follow similar paths, but FENE-MCR is already deviating (the ini-

tial oscillation has a longer period and less sharp variations). It is

interesting to notice in Fig. 12 b that the lateral velocity is nega-

tive at large times, when the typical Coriolis cell becomes fully es-

tablished, with fluid going along the −y direction at the central

plane ( z = 0 ), but for these viscoelastic fluids a kind of recoil phe-

nomenon occurs during the transient regime: v 0 is initially neg-

ative, due to the influence of the Coriolis force F C, y , but at t = 2

(about half a relaxation time) the elastic nature of the fluid pulls

the fluid elements back to their original configuration, even over-

shooting the initial position which is seen by the positive value of

the v -velocity component. This means that the recirculation cells

turn now in a direction opposite to that determined by the Corio-

lis force. 

Such recoil phenomena, typical of the time-dependent flow of

viscoelastic liquids, is illustrated in Fig. 13 by means of streamlines

of the secondary flow in the cross-section plane ( y - z ) and the cor-

responding velocity vectors field, for the FENE-P fluid model. At

time t = 1 after inception of the flow (with the axial pressure gra-

dient P = −d p/d x = 7 . 1135 and the angular rotation velocity 
 = 2

applied suddenly at t = 0 to the fluid initially at rest) the previous

figure ( Fig. 12 ) suggests that the flow is still in the initial acceler-

ating regime, with preponderance of Coriolis force generating the
istinctive recirculating cell pair: fluid is pushed to the left (mi-

us y -direction; in the figure the y -axis is to the right, the z -axis

o the top, and the x -axis leaves the page towards the viewer) and

o the upper cell has clockwise rotation (negative stream-function

alues ψ , with w = −∂ ψ/∂ y and v = ∂ ψ/∂ z) and the lower cell

as anti-clockwise rotation. However, at t = 2 the reversed situa-

ion is observed: the upper cell rotates anti-clockwise (positive ψ)

nd the lower cell clockwise. The centres of the re-circulations are

lso seen to be shifted to the left. Physically the situation can be

xplained as follows: polymer molecules are initially stretched as

oriolis force deviates the fluid to the left and thus creates a elon-

ational flow along the central plane y = 0 ; the molecules then re-

ax, after a certain time delay, and generate a flow along the op-

osite direction - that is, the recoil phase. This situation was seen

s the single large velocity oscillation in Fig. 12 eventually giving

 0 > 0; viscous effects will then tend to dump the elastic recoil ef-

ect, and at steady state the flow has the typical pair of cells re-

ated to overall duct rotation. Recoil is often found in viscoelastic

iquid systems; Pakdel et al. [42] reports a similar recoil effect ob-

erved in experiments during the transient set up of a lid-driven

avity flow. 

The variation of the number of iterations per time step is

hown in Fig. 14 for the FENE-P and FENE-CR models on the two

eshes. It is clear that method 2 requires much less iterations

n average, by a factor of about 7, with representative values of
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Fig. 14. Number of iterations per time step as a function of time for the square duct start-up case with rotation (angular speed 
 = 2 ). Comparison of the results for the 

two methods on two grids (51 × 51 and 101 × 101): (a) FENE-P; (b) FENE-CR. 

Fig. 15. Total accumulated number of iterations as a function of time for the square duct case with rotation 
 = 2 . Comparison of the two methods on the two grids. (a) 

FENE-P; (b) FENE-CR. 
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bout 6 iterations for the FENE-P and 4 for FENE-CR. The standard

ethod requires about 40 iterations per �t for the FENE-P model

nd around 25 to 30 iterations with the FENE-CR, values that only

tart decreasing as the steady state is approached. Higher numbers

f iterations per time step are generally required in the initial part

f the simulation, for times from t = 1 to t = 2 , when the physi-

al oscillation due to viscoelasticity takes place and the dependent

ariables change more abruptly. 

The computational cost is more directly related to the total

umber of iterations taken up to a given time instant, obtained

y summing all previous outer iteration numbers. In this way even

he fact that different time steps might have been used in the var-

ous simulations is duly taken into account. Fig. 15 shows the cor-

esponding plots, in which we emphasize again that the ordinate

s proportional to the computational cost. Not only does the new

ethod requires much less total iterations, but it is also less sensi-

ive (on the scales shown) to mesh refinement and exhibits a lower

ate of increase as time progresses. On the fine mesh, for the FENE-

 model, the reduced stress method required 30,896 iterations at

 = 20 , with a CPU time of 1797 s (about 30 min); the standard

ethod used 192,715 iterations and CPU of 12 388 s (about 3 h

nd 26 min). Hence, the new method entails a reduction of about

.9 fold in computer time, while the ratio of total iterations is 6.2,

howing that N it, tot provides an adequate measure of the computa-

ional cost. More data illustrating the computational gains achieved

e the new reduced-stress method are provided in Table 3: the

otal number of iterations at t = 20 ( N it, tot ); the average number
f iterations ( ̄n it = N it,tot / N t where N t is the number of time steps,

 t = t f inal / �t); the maximum number of iterations per time step

 n it , max ); the number of time steps at the end of the simulation,

ere taken as t f inal = 20 ( n it, final ); the CPU time in the PC with pro-

essor Intel Core i7-5500 U at 2.40 GHz. 

Finally, we provide in Table 4 some useful data for benchmark-

ng when the frame-rotation velocity (that is, the inverse of the

kman number) is raised from 
 = 0 to 
 = 10 . We recall that in

ll previous simulations we used the value 
 = 2 . It is seen that as

increases the average velocity U is reduced, as does the stream-

ise velocity component at the center u 0 , on account of more in-

ense Coriolis-induced recirculation cell patterns for the same in-

ut force P = −d p/d x . A measure of the strength of those recircu-

ations is given by the lateral velocity at the center v 0 (at t = 20 ):

n the case of the FENE-P, it reaches 17.5% of the average velocity

or 
 = 2 and increases to 20.5% for 
 = 4 , after which it tends

o reduce again slightly. Such trend may be explained as an effect

f shear-thinning in viscosity, since for the FENE-CR the results in

able 4 show a steady increase of the central lateral velocity v 0 
s is the rotation velocity 
 is increased. Similarly, data given in

able 4 for the extrema of the stream-function related to the sec-

ndary flow ( ψ max and ψ min , with ψ min = −ψ max due to the ver-

fied symmetry of that flow) replicate the same conclusions on the

nfluence of shear thinning; it is seen that the secondary flow is

bout 14% of the main flow rate for the FENE-P model and 7% for

he FENE-CR. For this latter model, owing to its Boger fluid-like

haracteristics, ψ max is always increasing with 
. The maximum
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Table 3 

Computational cost for the rotating duct case ( 
 = 2 ): number of iterations and computer times for the various consti- 

tutive models and solution methods. 

FENE-MCR FENE-CR FENE-P 

Method 1 Method 1 Method 2 Method 1 Method 2 

(a) Mesh 51 × 51 

Total number iter. 15,326 83,245 14,524 134,762 17,955 

Average n ° iter. 3.83 20.81 3.63 33.69 4.49 

Max. iter. per �t 9 50 9 53 9 

Iter. per �t at end 3 12 2 25 3 

CPU time (s) 226 1198 201 1892 255 

(b) Mesh 101 × 101 

Total number iter. 22,380 119,746 22,584 192,715 30,896 

Average n ° iter. 4.48 23.95 4.52 38.54 6.18 

Max. iter. per �t 17 55 17 58 17 

Iiter. per �t at end 3 14 2 30 4 

CPU time (s) 1377 7526 1385 12,388 1797 

Table 4 

Average velocity, velocity components at the central point and maxima secondary stream-function for the FENE-P and 

FENE-CR models at time t = 20 (mesh 101 × 101). Also given are the maximum and minimum lateral velocities during 

the transient process and the time instants at which they occur. 

FENE-P 


 = U u 0 / U v 0 / U ψ max , min ( v 0 ) min / U t ( v 0 ) max / U t 

0 2.92 1.83 0 0 0 – 0 –

2 2.43 1.66 −0.175 ± 0.119 −0.388 1.195 + 0.203 1.915 

4 2.13 1.47 −0.205 ± 0.140 −0.431 1.185 + 0.0184 1.645 

6 1.97 1.38 −0.202 ± 0.143 −0.359 1.084 −0.0474 2.300 

8 1.85 1.33 −0.190 ± 0.138 −0.297 1.285 −0.0700 2.785 

10 1.76 1.30 −0.178 ± 0.131 −0.261 1.205 −0.0790 3.270 

FENE-CR 


 = U u 0 / U v 0 / U ψ max , min ( v 0 ) min / U t ( v 0 ) max / U t 

0 1.00 2.10 0 0 0 – 0 –

2 1.01 2.09 −0.112 ± 0.0328 −0.930 1.195 + 0.486 1.880 

4 0.976 1.88 −0.191 ± 0.0562 −0.941 1.185 + 0.0498 2.395 

6 0.927 1.73 −0.227 ± 0.0676 −0.762 1.085 −0.103 3.025 

8 0.884 1.63 −0.242 ± 0.0731 −0.631 1.280 −0.175 3.755 

10 0.847 1.55 −0.247 ± 0.0753 −0.552 1.205 −0.205 4.520 
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and minimum values of v 0 during the transient flow set-up pe-

riod are also registered in Table 4 ; the minimum (negative) value,

representing cell rotation induced by Coriolis effects, occurs first

at an earlier time when the flow is still at an accelerating stage

(no differences between FENE-P and FENE-CR models). The max-

imum value ( v 0 ) max , which may be positive (cells rotating in the

opposite direction, due to elastic recoil) or negative (the direction

of rotation of the secondary cells is the same as that imposed by

Coriolis effects, in spite of some recoil being present), appears to

peak at a rotation of about 
≈ 2. Regarding mesh refinement and

the uncertainty of the present numerical results, the differences

between predictions (FENE-P, 
 = 2 , E = 5 ) on meshes 51 × 51 and

101 × 101 are only of about 0.1 % for U, u 0 and ( v 0 ) max , raising to

about 1% for v 0 (at t = 20 ) which is a rather small number. 

5. Conclusions 

It has been shown that the numerical solution of time-

dependent viscoelastic flow problems, whose fluids follow a differ-

ential constitutive equation of the FENE-P type (represented here

by the FENE-CR or FENE-P models) is much more efficient when

the method 2 here described is employed, in which the dependent

variable is a reduced stress defined as τ ′ 
i j = τi j / f ( τkk ) , where f is

the function of the trace of the stress tensor τ kk that describes the

spring force in the kinetic model. Compared to the classical appli-

cation of standard integration methods (such as the implicit Eu-

ler or the 3-time-level method) to the original constitutive equa-
ions, the new formulation brings in decisive advantages in terms

f computational speed, allowing the numerical solution for the

ime evolution of the stresses to be effected in a factor of 5 to 10

old faster. 

As shown in the Appendix, gains in efficiency essentially re-

ult from a numerical effect, whereby the iteration errors from the

tandard method (method 1) are related to a fixed-point constant

 F ′ ≡ | ∂ F / ∂ X |, for an iteration process X = F (X ) where the iterated

ariable is X = τxx , τxy , etc.) proportional to F ′ ∼= 

(τ n 
xx / L 

2 ) / f n , which

s of order ∼ 1 at most, although slightly smaller than unity (oth-

rwise the fixed-point iteration would not converge, since errors

t successive iterations k decay as e k +1 = | F ′ | k e 1 ). In contrast, with

ethod 2 the fixed-point constant is of order F ′ ∼= 

�t( τ ′ n 
xx / L 

2 ) ,

hat is ∼ 10 −2 − 10 −1 , and so convergence tends to occur with

uch less number of iterations. 

A novel flow problem was used as test case, namely the start-

p of viscoelastic flow in a rotating square duct after sudden impo-

ition of a pressure gradient, where rotational speed tends to gen-

rate a pair of counter-rotating recirculating secondary flow cells.

oriolis acceleration for a Newtonian fluid promotes a deviation to

he left along the “horizontal” ( z = 0 ) plane which gradually estab-

ishes a secondary flow, with an upper cell rotating clockwise and

 lower cell rotating anti-clockwise. For the viscoelastic fluids the

ame occurs at larger times, when a steady flow is eventually es-

ablished, but it was found that during the transient process a re-

oil phenomenon tends to generate a pair of cells rotating with op-

osite directions of those present when the steady state is reached.
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Fig. 16. Contours of the axial normal stress τ xx (a) and the flow-type indicator ξ = (D − 
) / (D + 
) (b) on the cross-section plane, for the FENE-P flow case with 
 = 2 

and E = 5 . 
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here is thus a reversion of the usual rotating cell pattern gener-

ted by Coriolis effects. While the standard stress method (method

) needs 3 hours and 30 minutes of CPU time to predict accu-

ately this flow evolution, the new reduced-stress method needs

ust about 30 minutes to predict it with the same degree of accu-

acy. 

It was also shown that the reformulation of the constitutive

quations associated with the reduced stress method is only mi-

or (compare Eqs. (5 ) and ( 12 ), for τ , and Eqs. (6 ) and ( 11 ), for

 ( tr τ)) and therefore it should be a simple matter to adapt existing

odes (including open source codes, such as that considered in the

ecent paper [43] ) to comply with the present method, when accu-

ate time-dependent calculations are sought. And finally, although

e have only considered the original FENE-P equation, the gains

n numerical efficiency should extend to more complex equations

erived from the microstructural FENE dumbbell model, such as

he FENE-L and FENE-LS [44] , if these are expressed in terms of a

tress tensor equation (instead of being solved for the conforma-

ion tensor). 

Finally, although the function f ( τ kk ) employed in the definition

f the reduced stress is often called extensibility function (as we

o here), it is important to realize that it may attain large val-

es even in shear flows, in which the trace of the stress is large

ue to normal stresses induced by the proximity to a wall. In the

wo first examples used here as test cases to demonstrate the

apabilities of the method, the flow is a pure shear flow. How-

ver, the third example is a mixed shear/extensional flow, with a

trong, almost pure extensional zone along the middle horizon-

al line of the cross-section ( z = 0 ). This aspect is corroborated

n Fig. 16 for the base case (FENE-P on the 101 × 101mesh, with

 = 5 , L 2 = 100 , β = 0 . 1 and rotation speed 
 = 2 ) at time t = 20 ,

howing on the left the deformation of the axial normal stress

eld ( τ xx ) brought about by the presence of the secondary flow,

nd on the right contours of a flow indicator function ξ [45] ,

alculated on the cross-section ( ξ = (D − 
) / (D + 
) , where D =
( 1 2 D : D ) 1 / 2 and 
 = ( 1 2 � : �) 1 / 2 , with the deformation rate tensor

 = 

1 
2 (∇u + ∇ u 

T ) and vorticity tensor � = 

1 
2 (∇u − ∇ u 

T ) ). This
ow-type indicator takes values of −1 , 0 and +1 for, respectively,

ure rotational, pure shear and pure extensional flows. Fig. 16 b

hows that in a wide zone adjacent to the lateral walls the flow

s shear dominated, but in the central horizontal zone there is a

lear sign of a strong extensional flow. Thus, the conclusions about

he merits of the reduced stress method are based on tests involv-

ng both shear and extensional flows. 
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ppendix: Approximate convergence analysis of the two 

ethods 

The simpler equations valid for the homogeneous start-up flow

f the FENE-CR model are sufficient for this analysis since they

lso reflect the much better behaviour of method 2 over method

, which is what we intend to demonstrate in this Appendix. In

imensional terms the stress equations, with the shear rate ˙ γ =
 u/d y taken as constant, are: 

xy + λ
∂ 

∂t 

(
τxy 

f 

)
= ηp ˙ γ

xx + λ
∂ 

∂t 

(
τxx 

f 

)
= 2 λ

τxy 

f 
˙ γ

nd when expressed non-dimensionally, by scaling time with the

elaxation time, stresses with the ratio ηp / λ, and defining a (con-

tant) Weissenberg number as W i = λ ˙ γ , they become: 

xy + 

∂ 

∂t 

(
τxy 

f 

)
= W i 

xx + λ
∂ 

∂t 

(
τxx 

f 

)
= 2 W i 

1 

f 
τxy 
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The extensional function, for a sufficiently large L 2 may be ap-

proximated by 

f = 

(
L 2 + τxx 

)
/ 
(
L 2 − 3 

)
≈ 1 + ε τxx 

where ε = 1 / L 2 is a small parameter (order ε ∼ 10 −2 ). With

method 1, when the time derivatives are approximated with the

Euler scheme, these equations become: 

τ n +1 
xy + 

1 

�t 

(
τ n +1 

xy 

f n +1 
− τ n 

xy 

f n 

)
= W i 

τ n +1 
xx + 

1 

�t 

(
τ n +1 

xx 

f n +1 
− τ n 

xx 

f n 

)
= 2 W i 

1 

f n +1 
τ n +1 

xy 

and the corresponding iteration loop is, dropping the n + 1 index

for new time level: 

τxy = 

W i + τ n 
xy / f 

n / �t 

1 + 1 / �t/ (1 + ετxx ) 

τxx = 

2 W iτxy / f + τ n 
xx / �t/ f n 

1 + 1 / �t/ (1 + ετxx ) 

which should be solved by successive substitution. To simplify

the notation, we call X = τxx , Y = τxy and A = 1 / �t (a large num-

ber, of order A ∼ 10 2 ). We consider the equation for τ xx , in which

we assume the numerator of the RHS to be approximately con-

stant C = 2 W iY/ f + A X n / f n so that the successive approximations

for τ xx , viewed as a fixed-point problem, may be written as: 

X 

∼= 

C 

A 

( 1 + εX ) ⇔ X = F ( X ) (or X k +1 = F ( X k ) ; k = iteration numbe

The condition for convergence is | ∂ F / ∂ X | < 1 [ 46 , Section 10.10,

p. 569] and the rate of convergence increases as the derivative gets

smaller than 1. For the above expression we have 

∂F 

∂X 

= 

C 

A 

ε 

or, going back to the original notation, 

∂F 

∂X 

∼= 

τ n 
xx 

f n 
1 

L 2 

We see that is slightly smaller than unity since f n is greater

than 1 and τ n 
xx at most becomes closer to L 2 from below. There-

fore, we conclude that method 1 converges but the convergence is

slow. 

With method 2 the non-dimensional equations are: 

f τ ′ 
xy + 

∂ 

∂t 

(
τ ′ 

xy 

)
= W i 

f τ ′ 
xx + λ

∂ 

∂t 

(
τ ′ 

xx 

)
= 2 W i τ ′ 

xy 

with f = 

L 2 (
L 2 − 3 − (1 /a ) τ ′ 

xx 

) ∼= 

1 (
1 − (1 / L 2 ) τ ′ 

xx 

)
In discretized form, using again the Euler scheme and the same

notation and approximations as before: 

( f + A ) Y = W i + A Y n 

( f + A ) X = 2 W iY + A X 

n ≈ C 

with f = 

1 

1 − εX 

. 

The iteration equation for X becomes: 

X = 

C 

A + 

(
1 

1 −εX 

) ∼= 

C 

A + 1 + εX 

≡ F (X ) 
nd the derivative of the fixed-point iteration function is 

∂F 

∂X 

∣∣∣∣= 

Cε 

(A + 1 + εX ) 
2 

or 

∣∣∣∣ ∂F 

∂X 

∣∣∣∣ ∼= 

C 

A 

2 
ε ( since ε X < 1 but ε X ≈1) 

r, using C ∼= 

AX 

n , 

∂F 

∂X 

∣∣∣∣ ∼= 

X 

n ε 

A 

= �t( τ ′ n 
xx / L 

2 ) ≈ O ( 10 

−1 ) to O ( 10 

−2 ) 
 1 

Therefore, this simplified analysis shows that the convergence

f method 2 is much faster than method 1, since for a fixed-

oint scheme the iteration error decays as e k +1 = | ∂ F /∂ X | e k or

 k +1 = | ∂ F /∂ X | k e 1 [46] , where k is the iteration counter. 
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